M ay 2 00 6 RIPS CONSTRUCTION AND KAZHDAN PROPERTY ( T )

نویسنده

  • DENIS OSIN
چکیده

We show that for any non–elementary hyperbolic group H and any finitely presented group Q, there exists a short exact sequence 1 → N → G → Q → 1, where G is a hyperbolic group and N is a quotient group of H . As an application we construct a representation rigid but not superrigid hyperbolic group, show that adding relations of the form xn = 1 to a presentation of a hyperbolic group may drastically change the group even in case n >> 1, and prove that some properties (e.g. properties (T) and FA) are not recursively recognizable in the class of hyperbolic groups. A relatively hyperbolic version of this theorem is also used to generalize results of Ollivier–Wise on outer automorphism groups of Kazhdan groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rips Construction and Kazhdan Property (t)

We show that for any non–elementary hyperbolic group H and any finitely presented group Q, there exists a short exact sequence 1 → N → G → Q → 1, where G is a hyperbolic group and N is a quotient group of H . As an application we construct a representation rigid but not superrigid hyperbolic group, show that adding relations of the form xn = 1 to a presentation of a hyperbolic group may drastic...

متن کامل

ar X iv : 0 70 5 . 46 08 v 1 [ m at h . C O ] 3 1 M ay 2 00 7 Nested Quantum Dyck Paths and ∇ ( s λ )

We conjecture a combinatorial formula for the monomial expansion of the image of any Schur function under the Bergeron-Garsia nabla operator. The formula involves nested labelled Dyck paths weighted by area and a suitable “diagonal inversion” statistic. Our model includes as special cases many previous conjectures connecting the nabla operator to quantum lattice paths. The combinatorics of the ...

متن کامل

Symmetric Groups and Expanders

We construct an explicit generating sets Fn and F̃n of the alternating and the symmetric groups, which make the Cayley graphs C(Alt(n), Fn) and C(Sym(n), F̃n) a family of bounded degree expanders for all sufficiently large n. These expanders have many applications in the theory of random walks on groups and other areas of mathematics. A finite graph Γ is called an ǫ-expander for some ǫ ∈ (0, 1), ...

متن کامل

AN UNCOUNTABLE FAMILY OF NONORBIT EQUIVALENT ACTIONS OF Fn

Recall that two ergodic probability measure preserving (p.m.p.) actions σi for i = 1, 2 of two countable groups Γi on probability measure standard Borel spaces (Xi, μi) are orbit equivalent (OE) if they define partitions of the spaces into orbits that are isomorphic, more precisely, if there exists a measurable, almost everywhere defined isomorphism f : X1 → X2 such that f∗μ1 = μ2 and the Γ1-or...

متن کامل

Property (t ) and Rigidity for Actions on Banach Spaces

1.a. Since its introduction by Kazhdan in [Ka], property (T ) became a fundamental concept in mathematics with a wide range of applications to such areas as: • The structure of infinite groups—finite generation and finite Abelianization of higher-rank lattices [Ka], obstruction to free or amalgamated splittings [Wa], [A], [M4], structure of normal subgroups [M2] etc.; • Combinatorics—the first ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006